DEVELOPMENT OF MODULAR PEPTIDE CARRIER FOR TARGETED GENE DELIVERY INTO HUMAN TUMOR AND STEM CELLS

DOI: https://doi.org/None

M.S. Bogacheva, А.А. Yegorova, V.S. Baranov, A.V. Kiselev D.O. Ott Research Institute of Obstetrics and Gynecology Mendeleevskaya line, 3, St. Petersburg, Russian Federation,199034

Introduction. Targeted gene delivery plays an exceptional role in the development of gene therapy. Peptide-based carriers are promising group of non-viral gene delivery vehicles due to biodegradability and easy structural and amino acid sequence modifications. The aim of the study. Study of cross-linking peptides modified with CXCR4 ligand as vehicles for gene delivery into human tumor and stem cells. Results. Here we developed non-viral gene delivery system on the basis of modular peptide carriers modified with CXCR4 ligand. Physico-chemical, DNA-protective, toxicological and transfectional properties of DNA/carrier complexes on tumor and mesenchymal stem cells were studied. Conclusion. We showed that the studied compounds are able to condence and to protect DNA against endonucleases, have low toxicity and can specifically transfect CXCR4+ cells including human mesenchymal stem cells.
Keywords: 
non-viral gene delivery, stem cells, peptide carriers, plasmid

Список литературы: 
  1. Pathak A., Patnaik S., Gupta K. Recent trends in non-viral vector-mediated gene delivery. Biotechnol. J. 2009; 4: 1559–72.
  2. Viola J.R., El-Andaloussi S., Oprea I., Smith E. Non-viral nanovectors for gene delivery: factors that govern successful therapeutics. Drug Deliv. 2010; 7 (6): 721–35.
  3. Kiselev A.V., Il`ina P.L., Egorova A.A., Baranov A.N., Gur`yanov I.A., Bayanova N.V., Tarasenko I.I., Lesina E.A., Vlasov G.P., Baranov V.S. Izuchenie lizinovyh dendrimerov kak vektorov dostavki gennyh konstrukciy v kletki e`ukariot. Genetika. 2007; 43 (4): 725–33. [Kiselev A.V., Il’ina P.L., Egorova A.A., Baranov A.N., Guryanov I.A., Bayanova N.V., Tarasenko I.I., Lesina E.A., Vlasov G.P., Baranov V.S. Lysine dendrimers as vectors for delivery of genetic constructs to eukaryotic cells. Russian J. of Genetics. 2007; 43 (6): 725–33 (in Russian)]
  4. Egorova A.A., Bogacheva M.S., Kiselev A.V. Poli- i oligopeptidnye nositeli dlya dostavki nukleinovyh kislot v kletki. Medicinskaya genetika. 2012; 11 (5): 3-14. [Egorova A.A., Bogacheva M.S., Kiselev A.V. Poly- and oligopeptide carriers for intracellular delivery of nucleic acids. Meditsinskaya genetika. 2012; 11 (5): 3–14 (in Russian)]
  5. Egorova A., Kiselev A., Hakli M., Urtti A., Baranov V., Ruponen M. Chemokine derived peptides as carriers for gene delivery to CXCR4 expressing cells. The J. of Gene Medicine. 2009; 11: 772–81.
  6. Liekens S., Schols D., Hatse S. CXCL12-CXCR4 Axis in Angiogenesis, Metastasis and Stem Cell Mobilization. Current Pharmaceutical Design. 2010; 16 (35): 3903–20.
  7. Peled A., Petit I., Kollet O., Magid M., Ponomaryov T., Byk T., Nagler A., Ben-Hur H., Many A., Shultz L., Lider O., Alon R., Zipori D., Lapidot T. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4, Science. 1999; 283: 845–8.
  8. Le Bon B., Van Craynest N., Daoudi J.M., Di Giorgio C., Domb A.J., Vierling P. AMD3100 Conjugates as Components of Targeted Nonviral Gene Delivery Systems: Synthesis and in Vitro Transfection Efficiency of CXCR4-Expressing Cells. Bioconjugate Chem. 2004; 15: 413–23.
  9. Driessen W.H., Fujii N., Tamamura H., Sullivan S.M. Development of peptide-targeted lipoplexes to CXCR4-expressing rat glioma cells and rat proliferating endothelial cells. Mol Ther. 2008; 16 (3): 516–24.
  10. Li J., Zhu Y., Hazeldine S.T., Li C., Oupicky D. Dual-function CXCR4 antagonist polyplexes to deliver gene therapy and inhibit cancer cell invasion. Angew Chem Int Ed Engl. 2012; 51: 8740–3.
  11. Kiselev A., Egorova A., Baranov V., Laukkanen A., Urtti A. Characterization of reducible peptide oligomers as carriers for gene delivery. Int J. Pharm. 2013; 441: 736–47.
  12. Egorova A.A., Kiselev A.V., Tarasenko I.I., Il`ina P.L., Pankova G.A., Il`ina I.E., Baranov V.S., Vlasov G.P. Giperrazvetvlennye poliliziny, modificirovannye gistidinom i argininom: optimizaciya DNK-kompaktizuyushhih i e`ndosomoliticheskih svoystv. Bioorganicheskaya himiya. 2009; 35 (4): 483–92. [Egorova A.A., Kiselev A.V., Tarasenko I.I., Il’ina P.L., Pankova G.A., Il’ina I.E., Baranov V.S., Vlasov G.P. Hyperbranched polylysines modified with histidine and arginine: The optimization of their DNA compacting and endosomolytic properties. Russian Journal of Bioorganic Chemistry. 2009; 35 (4): 437–45 (in Russian)]
  13. Grigoryan A.S., Kruglyakov P.V., Taminkina Yu.A., Polyncev D.G., Efimova O.A., Pendina A.A., Voskresenskaya A.V., Kuznecova T.V. Izmeneniya citologicheskih i kariologicheskih harakteristik mezenhimal`nyh stvolovyh kletok cheloveka pri kul`tivirovanii in vitro. Kletochnye tehnologii v biologii i medicine. 2010; 3: 141–6. [Grigorian A.S., Kruglyakov P.V., Taminkina U.A., Polyntsev D.G., Efimova O.A., Pendina A.A., Voskresenskaya A.V., Kuznetsova T.V. Alterations of cytological and karyological profi le of human mesenchymal stem cells during in vitro culturing. Bulletin of Experimental Biology and Medicine. 2010; 125–30 (in Russian)]
  14. Tsai L.-K., Leng Y., Wang Z., Leeds P., Chuang D.-M. The mood stabilizers valproic acid and lithium enhance mesenchymal stem cell migration via distinct mechanisms. Neuropsychopharmacology. 2010; 35: 2225–37.
  15. Gur`yanov I.A., Vlasov G.P., Lesina E.A., Kiselev A.V., Baranov V.S., Avdeeva E.V., Vorob`ev V.I. Kationnye oligopeptidy, modificirovannye lipofil`nymi fragmentami: ispol`zovanie dlya dostavki DNK v kletku. Bioorganicheskaya himiya. 2005; 31 (1): 22–30. [Guryanov I.A., Vlasov G.P., Lesina E.A., Kiselev A.V., Baranov V.S., Avdeeva E.V., Vorob’ev V.I. Cationic oligopeptides modified with lipophilic fragments: use for DNA delivery to cells. Russian J. of Bioorganic Chemistry. 2005; 31 (1): 18–26 (in Russian)]
  16. Kunath K., Merdan T., Hegener O., Haberlein H., Kissel T. Integrin targeting using RGD-PEI conjugates for in vitro gene transfer. J. Gene Med. 2003; 5: 588–99.
  17. Wiethoff C.M., Smith J.G., Koe G.S., Middaugh C.R. The potential role of proteoglycans in cationic lipid DNA complexes with model glycosaminoglycans. J. Biol. Chem. 2001; 276: 32806–13.
  18. King W.J., Kouris N.A., Choi S., Ogle B.M., Murphy W.L. Environmental parameters influence non-viral transfection of human mesenchymal stem cells for tissue engineering applications. Cell Tissue Res. 2012; 347: 689–99.
  19. Kucia M., Reca R., Miekus K., Wanzeck J., Wojakowski W., Janowska-Wieczorek A., Ratajczak J., Ratajczak M.Z. Trafficking of Normal Stem Cells and Metastasis of Cancer Stem Cells Involve Similar Mechanisms: Pivotal Role of the SDF-1–CXCR4 Axis. Stem Cells. 2005; 23: 879–94.
  20. Baranov B.C., Vaharlovskiy V.G., Komancev V.N., Glotov O.S., Glotov A.S., Kiselev A.V. Pervyy klinicheskiy opyt lecheniya val`proevoy kislotoy bol`nyh autosomno-recessivnoy spinal`noy myshechnoy atrofiey. Medicinskaya genetika. 2005; 4 (3): 119–22. [Baranov V.S., Vakharlovsky V.G., Komantsev V.N., Glotov O.S., Glotov A.S., Kiselev A.V. Treatment of spinal muscular atrophy patients by valproic acid. First clinical experience. Meditsinskaya genetika. 2005; 4 (3): 119–22 (in Russian)]