METHODS OF NEXT GENERATION SEQUENCING IN THE IDENTIFICATION OF MOLECULAR GENETIC DETERMINANTS OF HEPATOCARCINOGENESIS

DOI: https://doi.org/None

A.S. Makarova (1,2), I.F. Kustova (1), N.L. Lazarevich (1,2) 1 -Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Kashirskoe shosse, 24/15, Moscow, Russian Federation, 115478; 2 -M.V.Lomonosov Moscow State University, Leninskie gory, 1, Moscow, Russian Federation, 119234

Hepatocellular carcinoma (HCC) is the most prevalent form of malignant liver cancer characterized by late detection time and highly aggressiveness. The main risk factors for HCC development are chronic infections of hepatitis B and C viruses, cirrhosis, liver intoxication and some hereditary metabolic disorders. Hepatocarcinogenesis is multistep process, associated with multiple alterations of DNA structure and gene expression at different stages of tumor progression. These aberrations particularly affect components of Wnt/β-catenin-, р53- and Ras/MAPK-dependent signaling pathways, systems controlling chromatin remodeling and oxidative stress response. However up to the present the reliable prognostic markers for the estimation of HCC malignancy level which would allow the development of effective schemes for individualized HCC treatment choice had not been proposed. Development of the technologies of massive parallel sequencing (NGS) opens the remarkable advances in this field. Methods of exome and transcriptome sequencing allowed identification of new single nucleotide variations, deletions and insertions, chromosomal rearrangements, fusion proteins specific for tumor tissue, differential expression of genes and their alternatively spliced isoforms. The review considers the main molecular genetics aberrations specific for hepatocarcinogenesis and the prospects of NGS technology use for identification of the key determinants of hepatocyte malignant transformation which can be considered as potential targets for the development of new approaches for HCC therapy.
Keywords: 
hepatocellular carcinoma, massive parallel sequencing, mutations, chromosome aberrations, transcriptome, targeted therapy

Список литературы: 
  1. Ferlay J., Shin H.R., Bray F. et al. Estimates of worldwide burden of cancer in 2008. GLOBOCAN. Int. J. Cancer. 2010; 127 (12): 2893–917.
  2. El-Serag H.B., Rudolph K.L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007; 132 (7): 2557–76.
  3. Forner A., Llovet J.M., Bruix J. Hepatocellular carcinoma. Lancet. 2012; 379 (9822): 1245–55.
  4. Han Z.G. Functional genomic studies: insights into the pathogenesis of liver cancer. Annu. Rev. Genomics Hum. Genet. 2012; 13: 171–205.
  5. Feitelson M.A., Sun B., Satiroglu Tufan N.L. et al. Genetic mechanisms of hepatocarcinogenesis. Oncogene. 2002; 21 (16): 2593–604.
  6. Kern M.A., Breuhahn K., Schirmacher P. Molecular pathogenesis of human hepatocellular carcinoma. Adv. Cancer Res. 2002; 86: 67–112.
  7. Xuan J., Yu Y., Qing T. et al. Next-generation sequencing in the clinic: Promises and challenges. Cancer Lett. 2013; 340 (2): 284–95.
  8. Guichard C., Amaddeo G., Imbeaud S. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet. 2012; 44 (6): 694–8.
  9. Fujimoto A., Totoki Y., Abe T. et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 2012; 44 (7): 760–4.
  10. Huang J., Deng Q., Wang Q. et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat. Genet. 2012; 44 (10): 1117–21.
  11. Sung W.K., Zheng H., Li S. et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 2012; 44 (7): 765–9.
  12. Totoki Y., Tatsuno K., Covington K.R. et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 2014; 46 (12): 1267–73.
  13. Herceg Z., Paliwal A. Epigenetic mechanisms in hepatocellular carcinoma: how environmental factors influence the epigenome. Mutat. Res. 2011; 727 (3): 55–61.
  14. Cai M.Y., Hou J.H., Rao H.L. et al. High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Mol. Med. 2011; 17 (1–2): 12–20.
  15. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116 (2): 281–97.
  16. Giordano S., Columbano A. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology. 2013; 57 (2): 840–7.
  17. Gao F., Xia Y., Wang J. et al. Integrated analyses of DNA methylation and hydroxymethylation reveal tumor suppressive roles of ECM1, ATF5, and EOMES in human hepatocellular carcinoma. Genome Biol. 2014; 15 (12): 533.
  18. Chan K.C., Jiang P., Chan C.W. et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc. Natl. Acad. Sci. USA. 2013; 110 (47): 18761–8.
  19. Murakami Y., Tanahashi T., Okada R. et al. Comparison of hepatocellular carcinoma miRNA expression profiling as evaluated by next generation sequencing and microarray. PLoS One. 2014; 9 (9): e106314.
  20. Marquardt J.U., Galle P.R., Teufel A. Molecular diagnosis and therapy of hepatocellular carcinoma (HCC): an emerging field for advanced technologies. J. Hepatol. 2012; 56 (1): 267–75.
  21. Boyault S., Rickman D.S., de Reyniès A. et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007; 45 (1): 42–52.
  22. Lee J.S., Heo J., Libbrecht L. et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat. Med. 2006; 12 (4): 410–6.
  23. Hoshida Y., Nijman S.M., Kobayashi M. et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009; 69 (18): 7385–92.
  24. Huang Q., Lin B., Liu H. et al. RNA-Seq analyses generate comprehensive transcriptomic landscape and reveal complex transcript patterns in hepatocellular carcinoma. PLoS One. 2011; 6 (10): e26168.
  25. Marquardt J.U., Seo D., Andersen J.B. et al. Sequential transcriptome analysis of human liver cancer indicates late stage acquisition of malignant traits. J. Hepatol. 2014; 60 (2): 346–53.
  26. Berasain C., Elizalde M., Urtasun R. et al. Alterations in the expression and activity of pre-mRNA splicing factors in hepatocarcinogenesis. Hepatic Oncol. 2014; 1 (2): 241–52.
  27. Lin K.T., Shann Y.J., Chau G.Y. et al. Identification of latent biomarkers in hepatocellular carcinoma by ultra-deep whole-transcriptome sequencing. Oncogene. 2014; 33 (39): 4786–94.
  28. Annala M.J., Parker B.C., Zhang W., Nykter M. Fusion genes and their discovery using high throughput sequencing. Cancer Lett. 2013; 340 (2): 192–200.
  29. Edmondson H.A. Differential diagnosis of tumors and tumor-like lesions of the liver in infancy and childhood. Am. J. Dis. Child. 1956; 91: 168–86.
  30. Liu S., Chan K.W., Wang B., Qiao L. Fibrolamellar hepatocellular carcinoma. Am. J. Gastroenterol. 2009; 104 (10): 2617–24.
  31. Honeyman J.N., Simon E.P., Robine N. et al. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science. 2014; 343 (6174): 1010–14.
  32. Xu L., Hazard F.K., Zmoos A.F. et al. Genomic analysis of fibrolamellar hepatocellular carcinoma. Hum. Mol. Genet. 2014; Aug 13. pii: ddu418.
  33. Cornella H., Alisnet C., Sayols S. et al. Unique genomic profile of fibrolamellar hepatocellular carcinoma. Gastroenterology. 2015; S0016-5085(14)01580-7.
  34. Wilhelm S.M., Adnane L., Newell P. et al. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer. Ther. 2008; 7 (10): 3129–40.
  35. Makarova A.S., Lazarevich N.L. Deregulation of signaling pathways involved in sorafenib resistance of hepatocellular carcinoma. Klin. Lab. Diagn. 2013; 10: 66–8, 34–7.
  36. Quetglas I.M., Moeini A., Pinyol R., Llovet J.M. Integration of genomic information in the clinical management of HCC. Best Pract. Res. Clin. Gastroenterol. 2014; 28 (5): 831–42.
  37. Janku F., Kaseb A.O., Tsimberidou A.M. et al. Identification of novel therapeutic targets in the PI3K/AKT/mTOR pathway in hepatocellular carcinoma using targeted next generation sequencing. Oncotarget. 2014; 5 (10): 3012–22.
  38. Subbiah V., Westin S.N., Wang K. et al. Targeted therapy by combined inhibition of the RAF and mTOR kinases in malignant spindle cell neoplasm harboring the KIAA1549-BRAF fusion protein. J. Hematol. Oncol. 2014; 7 (1): 8.